skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Muratore, T. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. ABSTRACT Roots contribute a large fraction of CO2efflux from soils, yet the extent to which global change factors affect root‐derived fluxes is poorly understood. We investigated how red maple (Acer rubrum) and red oak (Quercus rubra) root biomass and respiration respond to long‐term (15 years) soil warming, nitrogen addition, or their combination in a temperate forest. We found that ecosystem root respiration was decreased by 40% under both single‐factor treatments (nitrogen addition or warming) but not under their combination (heated × nitrogen). This response was driven by the reduction of mass‐specific root respiration under warming and a reduction in maple root biomass in both single‐factor treatments. Mass‐specific root respiration rates for both species acclimated to soil warming, resulting in a 43% reduction, but were not affected by N addition or the combined heated × N treatment. Notably, the addition of nitrogen to warmed soils alleviated thermal acclimation and returned mass‐specific respiration rates to control levels. Oak roots contributed disproportionately to ecosystem root respiration despite the decrease in respiration rates as their biomass was maintained or enhanced under warming and nitrogen addition. In contrast, maple root respiration rates were consistently higher than oak, and this difference became critical in the heated × nitrogen treatment, where maple root biomass increased, contributing significantly more CO2relative to single‐factor treatments. Our findings highlight the importance of accounting for the root component of respiration when assessing soil carbon loss in response to global change and demonstrate that combining warming and N addition produces effects that cannot be predicted by studying these factors in isolation. 
    more » « less